
JOURNAL OF APPLIED ELECTROCHEMISTRY 21 (1991) 767-773 

Computer simulation of high-discharge-rate 
battery systems 
V. J. F A R O Z I C * ,  G. A. P R E N T I C E  

Department of Chemical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA 

Received 14 August 1989; revised 21 January 1991 

Simulat ions were carried out  for a proposed  two-dimensional  high-discharge-rate  cell under  load  with 
an interelectrode gap of  the order  o f  100/lm. A finite difference p rog ram was wri t ten to solve the set 
of  coupled,  part ial  differential equat ions  governing the behaviour  o f  this system. Cell dimensions,  cell 
loads, and  kinetic parameters  were varied to s tudy the effects on voltage, current  and  specific energy. 
Trends in cell pe r formance  are noted,  and  suggestions are made  for  development  o f  cells to meet  
specific design criteria. Model l ing  difficulties are discussed and  suggestions are made  for  improvement .  

Nomenclature 

A surface area of unit cell (cm 2) 
A k conductivity parameter ( c m  2 ~ I mo1-~) 
b Tafel slope (V) 
c concentration (tool cm- 3) 
Co concentration of bulk electrolyte (molcm 3) 
D diffusivity (cm 2 s- i ) 
D h lumped diffusion parameter (J s cm-2 tool- ~ ) 
Ds lumped diffusion coefficient (Acm 2 tool- 1 ) 
E rest potential of electrode (V) 
F Faraday constant (96 500 C tool- ~ ) 
i current density (A cm -2) 
I total current for unit cell (A) 
i0 exchange current density (A cm -2) 
N flux of charged species (tool cm 2 s J ) 

R gas constant (8.314Jmol -~ K -~) 
R~xt resistance external to cell (fl) 
t time (s) 
T temperature (K) 
to transference number 
u mobility (cm 2 tool J-  I s ~ ) 
V volume of an element in the cell (cm 3) 
~ext voltage external to cell (V) 
z charge on an ion 
t/o concentration overpotential (V) 
t/s surface overpotential (V) 
~c conductivity (~-  1 cm- ~ ) 
v stoichiometric coefficient 
4) electric potential in solution (V) 

1. Introduction 

Two-dimensional simulations of a high-discharge-rate 
battery system are examined in this paper. The pro- 
posed configurations are unique in that the inter- 
electrode gap is of the same order of magnitude as the 
evolving diffusional boundary layer. These cells are 
being considered because the low internal ohmic resist- 
ance associated with a small interelectrode separation 
makes possible a device that possesses very high 
specific power. Such batteries could eventually replace 
bulkier arrays currently used in aerospace and mili- 
tary applications. For example, one cell used for these 
applications was required to provide 30A for one 
minute at 14V [1]. The advantage of microelectrode 
construction is a decrease in size and weight from the 
present standard of 1.22 kg and 1000 cm 3. 

The partial differential equations used to model this 
system can be solved by the finite difference method. 
This algorithm allows considerable variation in the 
parameters describing the system, thus enabling a 
parametric study of the cell performance. The per- 
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formance variables of interest are voltage and current. 
Permutations in the major cell parameters (lengths 
and kinetics) were used to determine the effects on the 
transient outputs from the cell. 

2. Modelled system 

Cells having an interelectrode gap of the order of l 0 to 
100 #m were modelled. Assembly of such a microelec- 
trode array requires an adaptation of the mask and 
photoresist techniques used in the electronics indus- 
try. Hence, the unit cell should be easily fabricated 
in a repeating fashion on the surface of a substrate. In 
the light of this, the T-shape shown in Fig. 1 was 
chosen. This Can be thought of as part of a repeating 
array shown in Fig. 2. Changes in the indicated length 
scales can be used to alter cell performance to suit a 
particular purpose. Such a repeating box array is also 
relatively easy to fabricate. 

The zinc/silver oxide couple was chosen for this 
study because of its high power density and the avail- 
ability of relevant data [1], (Table 1). Although the 
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Fig, 1. Unit cell configuration. 

detailed electrode reactions are complicated and vary 
with depth of discharge, for design purposes the 
overall reaction may be considered to be [1] 

Zn + AgO = ZnO + Ag (1) 

On discharge, the model cathode reaction is 

AgO + H 2 0  q- 2e- = 2OH + Ag (2) 

The model anode reaction is 

Zn + 2OH- = ZnO + H20 + 2e (3) 

At equilibrium the stable species is the zincate 
Zn(OH)]-,  but reaction details are ignored in this 
study. The electrolyte for the model system is a 7 M 
aqueous KOH solution. 

3. Equations and theory 

The basic equations governing the model system 
were derived from dilute solution theory. Although 
the electrolyte of interest is relatively concentrated, 
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Fig. 2. Array configuration. 

Table 1. Properties of the zinc~silver oxide couple used in this work 

Characteristic Zinc anode Silver oxide 
cathode 

Tafel slope (V decade-~ ) 0.582 0.200 
i 0 (Acre -2) 0.235 0.250 
q~re~t (V/NHE) - 0.83 0.87 
Density (gcrn -3) 7.14 7.44 
Molecular weight (g tool- ~ ) 65.37 123.87 

approximate results can be obtained through suitable 
adjustment of the transport coefficients. At the rela- 
tively short times of interest, convective flows are not 
established, and the bulk fluid velocity in a narrow- 
gap cell is assumed to be zero. 

Combination of the expressions for the flux, 
material balance, and electroneutrality for a binary 
electrolyte yields [2] 

DVZc = Oc/Ot (4) 

and 

F V  " (cVd~) = DhOC/Ot , (5) 

where D and Dh are diffusion parameters that follow 
from the original mass balances, 

D h = ( D _  - D + ) / ( z + u + D  - z _ u _ D + )  (6) 

and 

O = ( z + u + D _  - -  z u _ O + ) / ( z + u +  - z _ u _ ) .  (7) 

There are two different boundary types for an elec- 
trochemical system: electrodes and insulators. For the 
insulator, there is no normal flux of charged species. 
This implies that the normal potential and concentra- 
tion gradients (the driving forces for ionic transport 
within the cell) are zero at the insulators, or 

( g o )  . . . .  = 0 (8) 

and 

(Vc),orm = O. (9) 

As an extension of  the work of Menon and Landau 
[3], both concentration and surface overpotentials 
were incorporated in the model. An expression for the 
concentration overpotential is necessary because large 
concentration gradients are built up in high-discharge- 
rate devices. The expressions used here are 

qs = b log (i / io) (10) 

for the surfaee overpotential and 

qc = 2 R T / F [ k l  In (C/Co) + k2(1 - C/Co)] (11) 

for the concentration overpotential, where 

k, = (3t0- + 1)/(to + 1) (12) 

and 

kz  = t o t a l ( t o  + 1) (13) 

Equation 10 is the Tafel equation, where b is the Tafel 
slope and i0 is the exchange current density. In 
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Equation 11, co is the bulk electrolyte concentration, 
and the t0's are the transference numbers. Binary elec- 
trolyte, linear concentration gradients, and a dilute 
solution were assumed. 

In order to calculate the overpotential losses, it is 
necessary to determine the current density and con- 
centration at the electrode surface. The expression for 
current density, 

i : -Akc(V~;Onor m --  Ds(Vc) . . . .  (14) 

allows for the transport of ions to the surface of the 
electrode by migration or by diffusion. The constants 
Ak and Ds, again, are derived from the mass balance 
yielding 

Ds = z + v + F ( D  - D + )  (15) 

and 

Ak = z + v + F Z ( z - u -  -- z+u+) ,  (16) 

where the v is the stoichiometric number or the num- 
ber of ions of a particular charge formed from a 
binary electrolyte. 

The concentration is calculated from that of  the pre- 
vious time step using a differential form of Faraday's 
law, 

dc = iA d t / n F V  (17) 

The change in concentration implied by this differen- 
tial is applied over a volume element V adjacent to the 
electrode surface. The current density at the adjoining 
electrode surface is used in the calculation of the 
concentration change. 

Once expressions for the surface concentrations and 
current densities have been calculated, they are put 
into Equations 10 and 1t to yield the total surface 
losses. These equations are used to calculate the vol- 
tage at the electrode surface, 

= E -  ~c - 'Ts (18) 

In addition to the previous equations that were 
inserted into the algorithm, an option to account for 
the presence of  an external finite resistance was 
included. This constrains the cell according to 

Vext = IRext (19) 

where R~t is the external resistance, I is the integrated 
sum of the current densities inside the cell, and V~xt is 
the voltage as measured across the terminals of the 
battery. Vext is calculated by 

V~xt = A E -  r/c - r h - AOoh  m (20) 

The overpotentials in Equation 20 are for both anode 
and cathode. AE is the difference between the rest 
potentials of the electrodes, and Aqbohm is the ohmic 
loss in the electrolyte that accompanies the passage of  
current. Because the electrodes are treated as equi- 
potential surfaces, the sum of  the loss components 
(overpotentials and ohmic drop) must be constant 
along any current path; therefore, A(I)otam w a s  cal- 
culated by numerically integrating ific along a path 
near the base of the 'T'. It is assumed that the current 

paths at this point are straight because this portion of  
the cell most resembles a parallel plate configuration. 
The conductivity of the medium ~ was assumed from 
dilute solution theory to be a linear function of the 
electrolyte concentration or 

tr -= AkC (21) 

The governing equations were cast into a frame- 
work for numerical solution. The method used for 
these equations was an iterative, implicit, finite 
difference method. Because the coupled concentra- 
tion-potential equation is not of known stability, an 
implicit formulation of the difference equations was 
chosen for its ability to handle unstable equations. 
Similar equations [4] have posed special difficulty due 
to unstable convergence behaviour. Initial attempts to 
utilize the Alternating-Direction Implict method did 
not lead to converged solutions. It proved more work- 
able to discretize in both Cartesian directions in a 
single expression, c f  Appendix A. A more detailed 
description of the algorithm used and the text of the 
program can be found elsewhere [5]. 

4. Results and discussion 

A two-dimensional simulation was chosen to model 
these systems because effects acting perpendicular to 
the battery array (such as gravity induced convection) 
are considered to be negligible. A basis of 1 cm was 
chosen for the plane perpendicular to the arrays 
shown in Figs 1 and 2. A summary of the results 
presented in the following paragraphs is presented in 
Table 2. 

A worst case in terms of useful battery lifetime is the 
short-circuit condition. One measure of  battery 
lifetime is the half-life, defined here as the time for the 
total current to reach one half of its initial value. If the 
battery is driving a purely resistive load, this corre- 
sponds to the voltage half-life as well. Figure 3 shows 
the discharge curve (normalized current versus half~ 
life) for a cell with a 100/~m interelectrode gap. Initial 
current is 13 A and the half-life is 7.4 ms. The lengths 
for this example, defined in Fig. 1, are L1 = 0.05 cm, 
L2 = 0.01cm, L3 = 0.01cm, and L4 = 0.04cm. 
Figure 4 appears identical to Fig. 3, but is a discharge 
curve for a proportionally sized cell of similar geo- 

Table 2. Results o f  sirnulations Jbr the lO #m-gap cell. Lengths as 
defined in Fig. 1; L3 equals L2 in all eases 

L1 (cm) L2 (cm) L4 (cm) Rex t (~)  Iinit (A) Half  life (s) 

0.050 0.010 0,040 0.00 12.23 7.4 • 10 -3 

0.005 0.001 0.004 0.00 9.30 1.0 • 10 -4 

0.050 0.010 0.040 0.07 7.62 3.1 x 10 -~ 
0.005 0.001 0.004 0.07 6.22 2.2 x 10 -4 

0.050 0.010 0.040 0.03 9.38 2.3 • 10 -2 

0.005 0.001 0.004 0.03 7.67 1.9 X 10  - 4  

0.070 0.010 0.030 0.03 8.11 3.7 x 10 -3 
0.007 0.001 0.003 0.07 6.12 2,3 • 10 -4 

0.009 0.001 0.002 0,07 4.88 2.1 x 10 -4 

0.005 0.001 0.004 0.18 4.71 4.5 x 10 -4 



770 V.J.  FAROZIC A N D  G. A. PRENTICE 

O 
o4 

O 
O 

o 
O -  

C- 

-5 
:.z, 

~ . o  
r - o -  

(D o 
(N 

o -  

o.oo ~.5o I.oo ~,5o' ~.oo ~.5o 
T ime /ha l f  life 

I 
5.00 Fig. 3. 100/~m-gap cell short-circuit 

performance. 

metry with an interelectrode gap of  10 #m. The corre- 
sponding lengths are L1 = 0.005 cm, L2 = 0.001 cm, 
L3 = 0.001cm, and L4 = 0.004cm. The initial 
current for this cell is 10 A, and its half-life is approxi- 

mately 0.1 ms. Even though this cell has 1% of the 
area of  the previous cell, its current output is compar- 
able for a short time. 

The short-circuit condition gives a measure of how 
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I I I I I I I i I quickly the cells deactivate in the worst case. It also 5 
illustrates a characteristic of these cells: the initial 
slopes of the current versus time plots are maintained 
through the half-life. All runs performed have shown 
this tendency. The absence of an electrode consump- 4 
tion term in the model implies that the simulated 
half-life is less accurate for the 10 #m-gap cells because 
electrode consumption has more effect on interelectrode 
s e p a r a t i o n . . ,  3 

The favourable characteristics of microscopic elec- 
trodes arise from the fact that the bulk electrolyte o~ 
resistance is roughly proportional to interelectrode gap. c 
When the gap is small, resistance to rapid discharge ~ 2 
resides almost entirely at the electrode/electrolyte a. 
interface. The factor that "shuts down" these cells is 
the diffusion layer formed at the electrode surface. The 
concentration overpotential associated with these 1 
layers can be sizeable. For  instance, the overpotential 
associated with the anode of the 10#m-gap cell at 
2.4 half-lives is 660mV or 68% of the total losses 
associated with that electrode. These depletion or ~  
enrichment zones are formed more quickly at higher 
discharge rates; therefore, the areas within the cell 
which are initially very active tend to "deactivate" 
first. The depletion of hydroxide in the 10 #m-gap cell 
near the base of the 'T', effectively shuts down this 
portion of the cell first. The current in the crossbar of 
the 'T' becomes proportionately greater as the distri- 
bution evolves because the higher bulk resistance due 
to the longer current paths moderates the electro- 
chemical reaction at these sites. This allows the dif- 
fusion of  ions to keep a closer pace with the kinetics 
of reaction and prevents the sharp concentration 
gradients that shut down the base of the 'T'. 

The performance of the 100/~m-gap cell and the 
10#m cell with an external load connected can be 
directly compared. The smaller cell will obviously not 
be able to drive loads as well as the larger one. An e 
array of 100 of  the smaller cells, however, occupies the 
same amount of space as one of the larger ones. 
Figure 5 illustrates two cases: a 100/~m-gap cell with 7 
a geometry as in Figure 4 loaded with a 0.07 if2 resistor 
and 100 lOpm-gap cells with a similar geometry s 
loaded with the same resistor. Superposition of solu- 
tions yields the resulting lines. This figure demonstra- 5 
tes the dramatic increase in power delivery that can be 
attained by using the smaller cells as well as the sharp 
transients that must be accounted for if such per- ~ 4 
formance and size are desirable. 

It is also of interest to observe how load size affects u 3i 
battery performance. There is a notable interaction 
between the internal chemistry of  the cell and the 
external resistance. Currents for the 10 #m-gap cell of 2 
Fig. 3 are presented as a function of time in Fig. 6 for 
three different loads. The resistance not only changes 1 
the available current but also the half-life. The cell 
loaded by the 0.03 f~ resistor has a half-life of  approxi- 
mately 1.9 x 10-4s compared with a half-life of ~ o 
2.2 x 10-as for the 0.07Q case and 4.5 x 10-4s for 
the 0.18 f~ load. The 0.18 f~ case may be considered a 
practical operating condition because the internal 
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Fig. 5. Power comparison ofa 100 ~tm-gap cell (dashed line) with an 
array of 100 10/~m-gap cells (solid line) driving a 0.1 .Q resistor. 

resistance of the cell is approximately equal to the 
external resistance. This condition is necessary for 
maximum power delivery through the load [6]. Such 
variations in initial output and half-life may be of  
importance depending upon the system to be driven. 

Because the main region of the cell that limits the 
half-life is the upright region of the 'T', it is important 
to consider the effect of changing the length scales on 
the half-life of  the cell. Changing the ratio of  upright 
electrode area to crossbar electrode area has some 

l I I I I I I I I I I I I 

I I I I I I I I I I I I I 
2 ~ 4 6 8 1 0  1 2  1 4  

T i m e  ( 1 0  - 5  s )  

Fig. 6. Effect of load on a 10 #m-gap cell: 0.18 ~q (solid line), 0.07 
(dashed line), and 0.03 f~ (dotted line). 
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Fig. 7. Initial current distribution for a 10#m-gap cell. Outward 
pointing vectors are proportional to the anodic current density; 
inward pointing vectors indicate cathodic current density. 

effect on initial current output and half-life. The area 
ratio has a very small effect on the half-life of  the 
10 pro-gap cell loaded with a 0.07 fZ resistor, but there 
is a fairly demonstrable decrease of the current output 
if the ratio of the upright area to the crossbar area is 
less than unity. This occurs because an increase in 
crossbar area causes an increased ohmic drop between 
the ends of the crossbar. In other words, the tips of the 
crossbar are less active than the case shown in Fig. 7. 

Surface overpotential is another parameter studied. 
Figure 8 shows the performance of the 10 #m-gap cell 
through a 0.03 fZ resistor with the anodic Tafel slope 
b reduced to one-fifth of  its base-case value. This 
reduction in Tafel slope corresponds to an approxi- 
mately 80% reduction in the kinetic resistance at the 
anode. The results illustrate that the discharge rate of 
the cell with the shallower Tafel slope is 20% higher 
initially but has a 20% smaller half-life due to the 
buildup of strong concentration gradients. 

Energy efficiency has a direct impact on size and 
weight. Specific energy would be expected to increase 
as electrolyte mass decreases because the electrolyte 
mass contributes to internal ohmic resistance as well 
as to weight; however, inefficiencies owing to high 
overpotentials (at a specified load) can overshadow 
the effects of  reduced electrolyte volume. The theoreti- 
cal specific energy calculated on an electrolyte-free 
basis for the zinc/silver oxide couple is 450 W h kg-~. 
Integration of the output power over the time required 
to consume all of the electrode material gave a rough 
estimate of the system's specific energy. On this 
basis the 100#m-gap cell had a specific energy of 
100 W h kg- 1 or 20 % of theoretical. For  the narrower 
cell 50 W h kg-l  was estimated (10% of the theoretical 
value). These values are low because rapidly develop- 
ing concentration effects persist throughout the inte- 
gration, a period of  many half-lives. The required 
support system was not taken into account. Other 
factors such as thermal management and electrode 
passivation would need to be considered in a realistic 
design. 

Several nonidealities were incorporated in approxi- 
mate fashion and others were ignored. The equations 
derived for ionic transport apply strictly to infinitely 
dilute solutions. At 7M (the bulk electrolyte con- 
centration for all runs), this assumption is invalid. 
However, this deviation may be taken into account in 
the transport constants in the equations. Such com- 
pensation was used by Menon and Landau with good 
results [3]. 
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Fig. 8. Effect of anodic Tafel slope on l0 #m-gap cell performance. 
Solid line is the base case and dashed line represents Tafel slope 
reduced to one-fifth of the base case value. 

Zinc passivates under many conditions in alkaline 
electrolyte. Although the nonidealities of the zinc elec- 
trode have been examined in numerous studies [1], no 
galvanostatic experiments have been done on zinc 
with the high current densities (100 to 1000 Acm -2) 
present in the model system. 

Some other considerations that were not incor- 
porated in the model are the effects of heat and moving 
boundaries. In a system with such high-discharge- 
rates the heating of the cell can be estimated by cal- 
culating the ohmic and overpotentiat drop within the 
cell. An approximate calculation indicates that the 
heating is on the order of 2W for both the 10#m-gap 
cells and the 100#m-gap cells. This corresponds to 
enough heating to raise the temperature of the solu- 
tion in the smaller cell approximately 10 ~ C assuming 
the interior of the cell to be adiabatic during such a 
quick heat generation. A rigorous calculation would 
require adjustment of some of the cell parameters such 
as the Tafel slope and the transport constants to 
accommodate this temperature increase. However, 
this should be interpreted as a second order effect 
given the other approximations introduced in the 
smaller cell. The larger cell has a greater heat storage 
capacity so its temperature increase is on the order of 
1 ~ C. Although the consumption of electrode material 
poses a more serious challenge, it is possible to per- 
form a series of simulations with consistently smaller 
electrodes corresponding to the amount of electrode 
material lost to reaction. Preliminary calculations 
indicate that the cell half-life (defined above) for the 
10/~m-gap cell differs if an allowance is made for a 
decrease in kinetic rates beyond model calculations 
due to an increase in the electrode gap. This effect 
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will probably cause significant deviation from the 
modelled results as the half-life is approached. 

5. Numerical analysis 

There are several types of  adjustable factors available 
for manipulation once the physical system is defined. 
The time and distance step sizes are major points that 
contribute to errors. It is known [7] that making these 
parameters as small as possible without using exces- 
sive computing time can minimize potentially serious 
difficulties. Another adjustable group of parameters 
contains the relaxation factors used to speed con- 
vergence. These do not influence the results obtained 
from simulations [4]. A final type of  adjustable 
parameter is the error criterion used to specify the 
degree of convergence of  the problem. All of these 
have been set to levels between 1 x 10 -6 and 5 x 10 -5 
throughout the program. In all cases, tighter con- 
vergence was not found to alter the solution appreci- 
ably. Looser convergence, although possible, leads to 
greater errors carried from time step to time step, 
an extremely undesirable situation for this type of 
simulation. 

Throughout  this study, there was a consistent dis- 
crepancy in the integrated current between the anode 
and the cathode. The anode current starts at a rela- 
tively high value and drops steadily in time. The 
cathode starts slightly lower (ca.  15%), peaks to a 
maximum value, and then falls. In all cases, the 
cathode current remained above the anode current by 
roughly an ampere. This inconsistency can be lessened 
by refining the time step for a 100/zm-gap cell from 
0.005s to 0.0001s. This improvement reduces the 
current discrepancy to less than 0.5 A at all times, but 
takes fifty times as long to run a simulation. Changing 
the distance discretizations and the convergence fac- 
tors brought about no appreciable improvements of 
this problem. A more detailed numerical analysis of 
this problem can be found elsewhere [5]. 

6. Conclusions 

Simulations of high-discharge-rate devices are useful 
in guiding the design of a battery for a specific applica- 
tion. The battery system performance can be tailored 
to a specific application by changing the interelectrode 
gap. The sharp initial current spike or transient seen in 
the 10/~m-gap case may be overcome by a combina- 
tion of  improved chemistry and wider gaps. On the 
other hand, if a current spike with the steepest possible 
slope is desired, one should make the gap as narrow as 
is practical. 

A more general suggestion for the geometry of the 
array is to make the upright-to-crossbar area ratio in 
a 'T' cell unity. This will yield a high current capacity 
and a favourable half-life. Such a geometry corre- 
sponds to square electrodes in Fig. 2. The importance 
of considering the load to be driven is also stressed. 
Thus, the entire system of battery and load should be 

considered as part of  the design process because the 
brevity of the half-life and severity of the transients are 
strongly influenced by the load. 
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Appendix 

The discrete form of  the coupled potential- 
concentration Equation 5 is given by 

I )  t + l  
i , j  

where 

B = 

and 

= [A + B + C ] / [ - 2 c l o ( l / d x  2 + 1/@2)] 

(22) 

/ 3  i" t + l  A = ~'htci,j - c~ j ) /d t  (23) 

t t + l  _ ( 1 ) t + l  -~ t - - 1 / d x [ Q j ( ~ i + ~ , j  i - l , j~  + ci+I/z.j 

t + l  t [ • t + l  r t + l  ~1 (24) 
- -  ( J ) i - - I / 2 , j )  "~- C i - - l [2 , j k " ' V i - - l l 2 , j  - -  " sv i+ l /2 , j ] J  

C t t + l  r  = -- 1/dy[cio (~i , j  + 1 - "~'i.j-I ) 

-~  t~i , j+l/2~, i , j + l / 2  - -  ~ t ' i , j - l / 2 , l  

, rav+l a~,+l ~1 (25) ~ -  Ci, j - - l / 2 k ~ i , j - 1 / 2  - -  "~ ' i , j+I /2)J"  

The half step terms are calculated by a three point 
estimate that is valid for equal node spacing. In 
general terms this is 

X i / §  ~--- 0.375X~+, + 0.75X i - 0.125Xi_ 1. (26) 

The subscripts i + 1, i - 1,j + 1, an d j  - 1 refer to 
the nodes adjacent to the general node (i, j )  in the 
mesh in the respective rectangular Cartesian axes. 
Values halfway between the (i, j )  node and its nearest 
neighbor on a given side are designated by a 1/2. The 
superscripts t and t + 1 designate the value at the 
present time and time plus one time step respectively. 
dx, dy, and dt are the step sizes in the i, j ,  and t 
directions. All other terms are defined elsewhere in the 
text. 


